TRANSPORT PROCESSES IN BODIES WITH A
LARGE NUMBER OF CRACKS '

R. L. Salganik , UDC 536.21:620.191.33

The problem of the effective conductivity is examined for a body with a large number of
cracks or cracklike inclusions.

The case of cracks, considered as the limiting case of inclusions, is distinguished by two peculiari-
ties. Firstly, because of the smallness of the volume fraction of the substance they contain, cracks can
influence the effective properties of a medium only if the properties of the surrounding material are so
radically distinct from the properties of this substance that the effect of the smallness of its volume frac-
tion is compensated or overlapped. Hence, arbitrary approaches, operating on the volume fractions of
the substances in the inclusions, are not applicable to cracks. Secondly, in contradistinction to volume
inclusions, small deformations of the medium can definitely influence both the magnitude and the symmetry
of the effective characteristics in the case of cracks.

1. Let us examine the effects mentioned in the small concentration approximation when the mean
spacing between cracks is sufficiently large so that their interaction can be neglected. For definiteness,
let us speak of the heat conductivity. In the approximation mentioned, the formula for the tensor of the
effective heat conductivity Ajk can be obtained in closed form (see [1], p. 69, for example, where the
anisotropy and distribution function in the orientations and sizes need only be taken into account in an
obvious manner to go over to the general case). Therefore,

hap = M 4+ iy — M) § Apf(Y)dY,

1
{fryay =N =

Here the set of arguments of the distribution function f is denoted by Y, and N is the number of all inclu~
sions per unit volume. The Ajj are determined by the relationship

[V = A, (2

where s;j is the temperature gradient far from the inclusion, sj is the same, within the inclusion; the
integration is taken over the volume of the latter (over repeated subscripts, summing from 1 to 3). There-
fore, if the solution of the problem of an isolated inclusion in a homogeneous external field is known, Afj
can be found from (2), and having been substituted into (1), the Ajk can be found,

For a homogeneous ellipsoid in a homogeneous isotropic material with heat conductivity A% and
homogeneous external field sj, the field within the ellipsoid is also homogeneous, where
(1 —m)A°s; —myq; = A°s;, (3
in a local coordinate system defined by the axes of the ellipsoid of length 2a; [1], where q{ is the heat flux

within the ellipsoid, and mji are the depolarization coefficients dependent only on the a; (there is no summa-
tion over i here). For oblate spheroids a; =a; =a >c =ay

1 2
g =y = —2— (1—mg), my= 1‘306 (@ — ar.ctg a), 49

where a = [(a /c)? —1]1/2
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2. If the ellipsoid is isotropic, then we have the following from (2) and (3):

4 gr'grj A !
Ay = — nayaay 22 = (8)
B TR L —1)m, »

where A is the heat conductivity of its substance, and gjj are the direction cosines of its axes. From (5},
4), and (1) we find
Dy = A2[8,, -+ [ (48, 4 Bn,n,) af sin 0dedOdadc], (6)
{f(9, 9, a, ¢)sin8dedddade = 4nN.
for the case of isotropic spheroids in an isotropic material. Here 6y, is a unit tensor, the solid angle

element is referred to 4w, ny = sin fcos ¢, ny = sin §siny, n; = cos ¢, are the components of the unit polar-
axis vector

a2 _B=b (7
3 4-+-(Mm—)nfg
2 1 2
B=ZBm—1 — ,
5 PO )[2m—m—nnm 4 (n— 1)apL }

where 8 =c¢ /a; { = 4m, / np; according to (4), ¢ —1as B— 0. The passage to cracks means that g < 1,
In the case of high conductivity, the substance within the cracks (n > 1) is

}\/0
}v"
and A = 0(Bn), B=0(n) for 1 > Y/ Ay > {c /a). In the case of low conductivity of this substance (n < 1)
;\’1 -
A0 R

. (8)

A=—B= 2 for 13-
3n a

A=0@), B=—— for 1% >
3n a

and A = 0(8), B=0(g/m) for 1 > !/ A% > ¢ /a. Therefore, if the characteristics of the substance in the
cracks differ so radically from the characteristics of the surrounding material that their corresponding
relationship turns out to be very much less than the relative crack thickness, the values of A, B in (7)

turn out to be finite and independent of the properties of the substance within the cracks. We call cracks
possessing this property strongly exposed. We shall henceforth neglect the influence of cracks not strongly
exposed. The influence of such cracks for which both of the small parameters being compared are of the
identical order of magnitude is thereby neglected in comparison with the contribution of the strongly ex-
posed eracks, as is possible when the fraction of the former is small.

For example, let the crack distribution be isotropic: f is independent of the angles. Then Ay = Adp,
and substituting (8) or (9) into (7), we find '

! A A0

A= 20 (1-;_ %2_0) for 1 7?>> o (10)
/ 8 c M

A=n0 (1—?0) for 1> —>—¢- (1

Here v = Na® {the bar denotes the statistical average) is a small parameter with the meaning of the volume
of a perturbation domain induced by the crack in the volume of the material per crack. As a comparison,
we have the following in the case of spherical inclusions of radius a [1]:

(12)

1__ \,0
= (14 4n M)
_ AL 220

where v = Na®. It is seen that the influence of strongly exposed cracks is qualitatively analogous to the
influence of spherical inclusions of the same radius. Quantitatively, spherical inclusions, as compared
to strongly exposed cracks of the same radius, result in a rise in A greater by (97/8) = 3.5 times in the
case of their high conductivity and in a reduction in A greater by (97/4) =~ 7 times in the case of low con-
ductivity.
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For cracks perpendicular to the x; axis, we find Aj = 0 (for i # k), Ay = Mgy = A, Agy = A7 analogously,
where ’

A,:k“(l+£v), p=20 for 1S5 (13)
3~ PR
o )

M=20, A=2[(1—Sp) for 1 S, (14
v 3. a A8

Therefore, the medium is transversally isotropic, and in the case of high conductivity the cracks
influence the effective conductivity only in parallel planes, and in the case of low conductivity, only in
perpendicular directions.

3. Let us assume that the material is transversally isotropic A, = A, = }\g, Ms = A} and the inclusions
are the same as in Sec. 2 and oriented with the polar axis along the x; axis. As is known, the solution for
this case can be obtained on the basis of the solution for an anisotropic ellipsoid in an isotropic medium
by using a similarity transformation [1]:

{1 X g} —{xy, %, xa(x‘t’/x?)‘/ﬂ}.

The conductivity of the material hence becomes equal to A{, the polar axis of the spheroid is 2c ()\2/ ?\2)1/ 2
its conductivity along it is A; = A1A?/A! while in the transverse direction A{ = A'. Hence, we find the follow-
ing from (1), ), (3):

Moo= A0l + a®Arif(a, ¢ydadcl,  {jdadc=N,
(15)

4 p(n*—1) 4 B/ —1
A == B T A == —— JT — s
T T T @ —Dm T 3 T (a8 ) — 1im

where My = Agp = Ay Mgz = Ay, ¥ = (?\1/ ?\2), B=(c/a), m{" are expressed by (4) with o replaced by o*
=[] /62D —1" % In particular, it hence follows that

8 0
b= A0 (1~%—‘/2—gvj A= AY (16)
¢t/

(F 1> By (A2) . an

for

The right-hand inequality denotes that the cracks are strongly exposed, while the left (when 7\,2 and }\? are
of the same order) is the ordinary condition of smallness of the relative crack thickness.

4, Let us examine the influence of mechanical stresses. Let §; be the relative half-thickness of a
crack in an unstressed body. Considering that the substance within the cracks does not exert any mechani-
cal resistance, the additional half-exposure can be calculated, because of the smallness of 3y, by using
(10.129) from [2] for an infinitely thin slit. Then we obtain, analogously to [3],

4(1 —v;
f=p, + *(‘TL?O)“ Gyt (18)

where cjy is the applied stress tensor. Now, § from (18) should be introduced under the condition of strong
exposure of the cracks. Thus, for isotropically distributed cracks, we have in place of condition (8)

/ 0 \
nE, p ) ‘ (19)

Oy 31y > —le (—7\;‘ —Bo

If A0/ Y —By > 0, then the cracks in the unstressed body are not strongly exposed, and in order to make
their exposure strong it is necessary, according to (19), to apply tensile stresses. In the opposite case,
the cracks in the unstressed body are strongly exposed and, according to (19), can become not strongly
exposed by applying compressive stresses. For example, let the loading be uniaxial so that ojgnjng

= gcos® 4, where 6 is the angle between the loading axis and the normal to the crack. Then )i is found
by means of (6) and (8), with f independent of the angles, where the integration is over all ¢ and over ¢
in the interval (7/2)—g¢, < 6 < (x/2) + ¢,, where sin?y, = h% = [A%/AY) —B]7E,/ 4(L ~ v{)o if the initial
crack exposure is strong, and with the interval (7/2) =Py <0< (r/2) + Ve discarded, where sin® .
=h, =~ [By— A/ANI 7E,/ 4(1 —v}) (o) if it is not strong. Here the stress o is assumed to be adequate so
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thath, < 1 (for o > 0) or b, < 1 (for o < 0); in the opposite case its influence is negligible. Integrating
and using the notation M3 = Ayy = A, Ay = Ay (the medium effectively becomes transversally isotropic), for
the case of the initial crack exposure not strong we find

By = 20 {1 +.g_<4~ Sh*-—hf)vJ ,

(20)

0731y 12

Ay =2 {1:—« @—3h, ~ 10|, hy~| L) 6201::50 } ,

X { 4(l —wvpo
and for the case of a strong initial exposure,
by == 30 F %(3/1** 1) j ,

‘ (21)

0 1 1/2

M= [1 —m(Bh**_hS) } h**_{ [Bo — (W/M)] nE, }/ ,

4(1 ——V())(——- 0')

5. All the preceding formulas are valid even if a small concentration of inclusions is introduced into
the medium containing inclusions of much smaller size. Relative to the inserted large inclusions, such a
medium can be considered homogeneous and possessing an effective conductivity. Let us assume that there
is a broad size distribution of inclusions, and inclusions of similar size to which an infinitely smalil con~
centration corresponds are distributed uniformly in the space between the large-size inclusions; the total
inclusion concentration can hence be finite. Then the resultant effective conductivity can be found by 2 step-
by-step application of the low-concentration approximation. Thus, in the case of spherical inclusions we
must replace-A by A+ da, A° by A, v by dv in (12) to determine the increment in the heat conductivity di
as a result of adding an infinitesimal fraction of inclusions whose size cons1derab1y exceeds the size of all
those already introduced, and then integrating we find

1; 0v3 4 ] .
SR ST et N (22)
4z Ry i A S ,
In the case of quite high /2% > 1 or quite low (/2% «< 1 conductivity of the inclusions, we find
A= Lexp (nv), {(23)
where % = 47 in the former case and » = -2, in the latter. We also have the same formula with » = (32 /9)
and » = —(8 /9) in the same cases for cracks [see (11) and (12)].

The medium will be transversally isotropic in each step for a system of parallel cracks, so that by
applying an analogous procedure to (17), we find for the case of high conductivity

Ay = A0 ( 1= % u)—, By =20, (24)

The low-conductivity case can be examined in the same way. In the case of cracks v = Na® = ENia?i) in
these formulas, where Nj is the number of cracks of radius aq) per unit volume of the medium, N = INj.
For spherical (and generally volume) inclusions, v is analogously expressed; however, Nj are the numbers
of inclusions per unit volume of the medium in the space between all the inclusions of radius greater than
a (i), since it is necessary to take into account the intrinsic volume of the inclusions. In this latter case,
evidently Avj = Nia‘ozi) = (3/4mawy /(1 —wi), where w; and Aw;j are the volume fractions of inclusions of
radii greater than a i) and of radius a @) respectively. Going over to the asymptotic of the broad size
distribution and here replacing the increment by the differential, after integration we find

In(l —w). (25)

U= —
45

Considering the volume fraction of inclusions as argument from the very beginning, Bruggeman [4]
established a power-law dependence obtained from (22), (25) by eliminating v, without indicating, how- -
ever, that a broad size distribution is required for its validity. The value of this requirement for the
validity of the Bruggeman results {(and the fact that it is not valid for inclusions of mutually similar size)
was apparently first conceived in[5]. In connection with the problem of the effective elastic characteristics
of bodies with a large number of cracks, the asymptotic of a broad size distribution was considered in [6].
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The value of the results obtained by using the differential procedure mentioned emerges beyond the
framework of the approximation of a broad size distribution, however. For inclusions whose properties
differ strongly from the properties of the surrounding material, including cracks, these results are directly
applicable independently of the size distribution, including the case of completely identical sizes, in a wide
range of variation of the concentration under the condition that the inclusions remain isolated, i.e., the
formation of pairs, triplets, etc., can be neglected (in the opposite case they should be taken into account
as new objects), and that a spatial arrangement of inclusions compatible with this requirement and the con-
servation of this effective symmetry of the medium be sufficiently random. However, it should be empha-
sized that such a universality of the result holds for volume inclusions only when v is taken as the argu-
ment. The dependence on the size distribution is manifest in the expression of the result in terms of the
volume fraction of inclusions. Thus, we have the dependence (25) in the case of a very broad distribution
and v = (3/4mw, in the case of identical dimensions. The argument is only v for cracks and similar ques-
tions do not arise.

The possibility of fhe considered broadening of the range of applicability of the results obtained on
the basis of the mentioned differential procedure is shown and confirmed experimentally for kindred prob-
lems about the effective elastic characteristics in our joint research with A, S. Vavakin,

NOTATION
xisk is the heat conductivity tensor (s = 0, material; s = 1, inclusions or cracks: no superscript,
effective);
AS is the isotropic heat conductivity;
?\f, ?\Zs are the heat conductivity in the case of transversal isotropy in the isotropy plane and in the
perpendicular direction, respectively;
ai is the half-length of the axes of an ellipsoidal inclusion;
a " is the radius of a spheroidal inclusion at the equator (particularly of a crack);
c is the half-length of its polar axis;
nj : is the unit vector of this axis;
@, 6 are the longitude and latitude defining its direction;
Y ig the set of orientation and size parameters of an ellipsoidal inclusion;
f(Y) - is the distribution function of such inclusions;
N is the number of all cracks or inclusions per unit volume v = Na®
a® is the mean cubic radius of a crack or an inclusion equator;
w is the volume fraction of spherical inclusions;
B=c/a;
0 is the value of 8 in an unstressed body;
n= /2%
n* = N/l
Ey, v are the Young's modulus and Poisson's ratio of the material;
Ojk is the mechanical stress tensor;
i) is the uniaxial stress, tensile (¢ > 0) or compressive (o < 0).
LITERATURE CITED
1. 1. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media [in Russian], Fizmatgiz,

Moscow (1959).

I. Sneddon, Fourier Transforms, McGraw-Hill (1951),

J. B, Walsh, J. Geophys. Res., 70, 381 (1965).

D. A. G. Bruggeman, Ann, Physik, 24, 636 {1935).

G. H. Neal and W. K. Nader, Amer. Inst. Chem. Engrs. J., 19, 112 (1973).
R. L. Salganik, Izv. Akad. Nauk SSSR, Mekhan. Tverd. Tela, No. 4 (1973).

S ok W

1538



