
T R A N S P O R T  P R O C E S S E S  IN B O D I E S  W I T H  A 

L A R G E  N U M B E R  OF C R A C K S  

R .  L .  S a t g a n i k  UDC 536.21:620.191.33 

The problem of the effective conductivity is examined for  a body with a large number  of 
c r acks  or  c rackl ike  inclusions. 

The case  of c r acks ,  considered as the limiting case of inclusions,  is distinguished by two pecu l ia r i -  
ties. F i r s t l y ,  because of the smal lness  of the volume fraction of the substance they contain, c racks  can 
influence the effective proper t ies  of a medium only if the proper t ies  of the surrounding mater ia l  a re  so 
r ad ica l ly  dist inct  f rom the proper t i es  of this substance that the effect of the smal lness  of its volume f r a c -  
tion is compensated o r  overlapped. Hence, a rb i t r a ry  approaches ,  operat ing on the volume fract ions of 
the substances in the inclusions,  are  not applicable to c racks .  Secondly, in contradist inct ion to volume 
inclusions,  smal l  deformat ions  of the medium can definitely influence both the magnitude and the symmet ry  
of the effective cha rac t e r i s t i c s  in the case of c racks .  

1. Let us examine the effects mentioned in the smal l  concentrat ion approximation when the mean 
spacing between c racks  is sufficiently large so that their  interaction can be neglected. For  definiteness,  
let us speak of the heat  conductivity. In the approximation mentioned, the formula for the tensor  of the 
effective heat conductivity Zik can be obtained in closed form (see [1], p. 69, for example, where the 
anisotropy and dis tr ibut ion function in the orientat ions and s izes  need only be taken into account in an 
obvious manner  to go over  to the genera l  case).  Therefore ,  

) l  0 
Zi~ , = ~,i~ 4- ( i i - -~ , i i )  ~ A j h f ( Y ) d Y ,  

S f (V)dY  = N. 
(1) 

Here the set of arguments of the distribution function f is denoted by Y, and N is the number of ai[ inclu- 
sions per unit volume. The Aij are determined by the relationship 

S s~ dV = A~jsj, (2) 

where sj is the temperature gradient far from the inclusion, s~ is the same, within the inclusion; the 
integration is taken over the volume of the latter (over repeated subscripts, summing from 1 to 3). There- 
fore, if the solution of the problem of an isolated inclusion in a homogeneous external field is known, Aij 
can be found from (2), and having been substituted into (1), the ~ik can be found. 

For a homogeneous ellipsoid in a homogeneous isotropic material with heat conductivity ~0 and 
homogeneous external field s i, the field within the ellipsoid is also homogeneous, where 

(1 - -  mi)  ~o s~ - -  m~q~ = ~o si ' (3) 

in a local  coordinate  sys tem defined by the axes of the ellipsoid of length 2a i [1], where q~ is the heat flux 
within the ellipsoid, and mi a re  the depolarizat ion coeff ic ients  dependent only on the a i (there is no s u m m a -  
tion over  i here).  Fo r  oblate spheroids a 1 = a 2 = a > e = a 3 

__~ I + a~ (a - -  arctg a), (4) 
�9 m I = m~ = (1 - -  m 3 ) ,  m 3 a 3  

where  ~ = [ ( a / c )  2 - I ]  I/2. 
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2. If the e l l ipsoid  is i so t rop ic ,  then we have the fol lowing f r o m  (2) and (3): 

4 g~ g~j ~.t 
A ~  - --~ ~ala~a3 , "q-- , ( 5 )  

1 -]- Oq - -  1)  m r L ~ 

w h e r e  ~l is the hea t  conduct iv i ty  of  its subs t ance ,  and gik a r e  the d i r e c t i o n  cos ine s  of its a x e s .  F r o m  (5), 
(4), and (1) we find 

Li ~ = Xo [5i~ 2t- ~ (AS~k + Bninh) a3{ sin Od(pdOdadc], 

.I f (% 0, a, c) sin Odq~dOdadc = 4nN. 

(6) 

fo r  the c a s e  of' i so t rop ic  sphe ro id s  in an i so t rop ic  m a t e r i a l .  He re  5ik is a unit t en so r ,  the sol id angle 
e l e m e n t  is r e f e r r e d  to 4v, n 1 = s in 0cos  ~, n 2 = s in 0 sin ~, n 3 = cos  0, a r e  the componen t s  of  the unit p o l a r -  
axis  v e c t o r  

A 4 ~(~--  1) 
3 4 -~- (rl--  1) nl~ ~ 

2 =  l~('q--1) 2Tl__01__l)n13 ~ - -  4 ~ _ ( ~ l _ l ) r ~  ~ , 

(7) 

w h e r e f l = c / a ;  ~ = 4 m  i / T r f i ; a c c o r d i n g t o  (4), ~ - - l a s  f i - - 0 .  The pa s sage  to c r a c k s  m e a n s  tha t f i  <<1. 
In the c a s e  of  high conduct iv i ty ,  the subs tance  within the c r a c k s  (7 >> 1) is 

A=--B= __4 for l>>--c >>--2~ , (8) 
3n a )1 

and A = O(fi~?), ]3 = O(fl~)) fo r  1 >> (k~ 1) >> ( e / a ) .  In the case  of low conduc t iv i ty  of  this subs tance  (7 << 1) 

A = 0 ( ~ ) ,  B =  2 for I>> c >>-- (9-) 
3n a ~0 

and A = O(fi), B = O ( f l / n ) f o r  1 >> (~l/h0) >> c / a .  T h e r e f o r e ,  if  the c h a r a c t e r i s t i c s  of  the subs tance  in the 
c r a c k s  d i f fe r  so r ad i ca l l y  f r o m  the c h a r a c t e r i s t i c s  of the su r round ing  m a t e r i a l  that  the i r  c o r r e s p o n d i n g  
r e l a t ionsh ip  turns  out to be v e r y  much  l e ss  than the r e l a t i ve  c r a c k  th ickness ,  the va lues  of  A,  B in (7) 
turn out to be finite and independent  of  the p r o p e r t i e s  of the subs tance  within the c r a c k s .  We cal l  c r a c k s  
p o s s e s s i n g  this p r o p e r t y  s t rong ly  exposed.  We shal l  hence fo r th  neg lec t  the inf luence of c r a c k s  not s t rong ly  
exposed .  The inf luence of such c r a c k s  fo r  which both of the sma l l  p a r a m e t e r s  being c o m p a r e d  a re  of  the 
ident ica l  o r d e r  of  magni tude  is the reby  neglected  in c o m p a r i s o n  with the con t r ibu t ion  of  the s t rong ly  e x -  
posed  c r a c k s ,  as  is poss ib le  when the f r ac t i on  of the f o r m e r  is smal l .  

F o r  example ,  let the c r a c k  d i s t r ibu t ion  be i so t rop i c :  f is independent  of  the angles .  Then ;~ik = ;~6ik 
and subs t i tu t ing  (8) o r  (9) into (7), we find 

)~_=)~0 ( 1 _ 32 v') for  1 ) )  __c 7>--)j , ) 3  (10) 
9 a 

~=,.1, ~ 1 - - -~ -v  f o r  1 >> --a )> ~ (11) 

H e r e  v = N a  3 (the b a r  denotes  the s t a t i s t i c a l  ave rage )  is a sma l l  p a r a m e t e r  with the mean ing  of the volume 
of  a p e r t u r b a t i o n  domain  induced by the c r a c k  in the vo lume of  the m a t e r i a l  pe r  c r a c k .  As a c o m p a r i s o n ,  
we have the fol lowing in the c a s e  of s p h e r i c a l  inc lus ions  of  r ad ius  a [1]: 

:=~0 1 ~ 4 n  ~1_~2~0 v , (12) 

w h e r e  v = N a  3. It is s een  that the inf luence of s t rong ly  exposed  c r a c k s  is qua l i t a t ive ly  analogous  to the 
inf luence of  s p h e r i c a l  inc lus ions  of the s a m e  rad ius .  Quant i ta t ive ly ,  s p h e r i c a l  inc lus ions ,  as  c o m p a r e d  
to s t rong ly  exposed c r a c k s  of  the s a m e  r ad ius ,  r e s u l t  in a r i s e  in ~ g r e a t e r  by (9~ /8 )  ~- 3.5 t imes  in the 
c a s e  of the i r  high conduc t iv i ty  and in a r educ t ion  in 2~ g r e a t e r  by (97r/4) -~ 7 t imes  in the c a s e  of  low c o n -  
duct iv i ty .  

1535 



F o r  c r a c k s  pe rpend icu la r  to the x 3 axis ,  we find Xik = 0 (for i ~ k), Xll = 7t22 = X t, X3s = X l analogously,  
where  

Xi----), ~ 1 +  v , X,=)~ ~ fo r  1 )> c ) > _ 7 ,  (i3) 
�9 CL 

),t=)~o ' ),,=;~o ---3- .  fo r  1>> c~->>a )~o " (14) 

T h e r e f o r e ,  the med ium is t r a n s v e r s a l t y  i so t rop ic ,  and in the case  of high conductivity the c r ack s  
influence the effect ive  conductivity only in p a r a l l e l  p lanes ,  and in the case  of low conductivity,  only in 
pe rpend i cu l a r  d i rec t ions .  

3. Le t  us a s s u m e  that the m a t e r i a l  is t r a n s v e r s a t l y  i so t ropic  Xl~ = ~2 = X~, ~3 = ~ and the inclusions 
a r e  the s ame  as in Sec. 2 and or iented with the po la r  axis  along the x 3 axis .  As is known, the solution for  
this ca se  can  be obtained on the bas i s  of the solution for  an anisot ropic  el l ipsoid in an i so t rop ic  medium 
by using a s i m i l a r i t y  t r an s fo rm a t i on  [1]: 

{Xl' X2, X3}-'+ {Xl, X 2, X 8 (~L7 / ~7 )1/2}. 

The conductiviW of the mater ia l  hence becomes equal to X~, the polar axis of the spheroid is 2c (X~/XT)l/2, 
i ts  conductivi ty a long  it  is  X~ = Xl~/X~ while in the t r a n s v e r s e  d i rec t ion ~ = X i. Hence,  we find the fol low- 
ing f rom (1), (2), (3): 

~.t,,= XTd[1 + ~a3A~,,f(a, c)dadc], ~fdadc= N, 

4 ~(~*--  1) , Az 4 1~[q*(~7!~7)-- l] (15) 
, = = - - 7 {  ~ 0 ,  0 ' At=--3 n 1 +" Ol*-- 1)ml 3 1 + [q*(~,~ i kt ) - -  lira3 

where  h i  = X22 ~ k t ,  Xa3 = XI, il* = (X1/X~), 77 = ( c / a ) ,  m~ a r e  exp re s sed  by (4) with ~ replaced by a *  
= [(7,~//72X~)-1] . In pa r t i cu l a r ,  it hence follows that 

( (16) 

f o r  
0<7 / }<0 ),;_~ >> I~ >> 0 ~ ~7 ),/%1. (17) 

The r ight-hand inequality denotes  that the c r a c k s  a re  s t rongly  exposed,  while the left  (when ~ and X~ a re  
of the s ame  o rde r )  is  the o rd inary  condition of s m a l l n e s s  of the re la t ive  c r a c k  thickness.  

4. Let  us examine  the influence of mechan ica l  s t r e s s e s .  Le t  770 be the re la t ive  ha l f - th ickness  of a 
c r a c k  in an u n s t r e s s e d  body. Cons ider ing  that the subs tance  within the c r a c k s  does  not exe r t  any m e c h a n i -  
cal r e s i s t a n c e ,  the addit ional ha l f - exposu re  can be calcula ted,  because  of the sma l lnes s  of/70, by using 
(10.129) f r o m  [2] for  an infinitely thin slit .  Then we obtain, analogously to [3], 

4(1 --v~) 
~= ~o + s~Eo ait~n~n~,~, (18) 

w h e r e  Cfik is the applied s t r e s s  tensor .  Now, fi f rom (18) should be introduced under the condition of s t rong 
exposure  of  the c r a c k s .  Thus,  for  i so t rop ica l ly  dis t r ibuted c r a c k s ,  we have in place of condition (8) 

~E ~ ( ~ o o - - ~ o ) .  (19) 
~ 4(I - -  v0) ~ -  

If (Tto/x 1) -/70 > 0, then the c r a c k s  in the uns t ressed  body a r e  not s t rongly exposed,  and in o rde r  to make 
the i r  exposure  s t rong  it  is n e c e s s a r y ,  accord ing  to (19), to apply tensi le  s t r e s s e s .  In the opposite case ,  
the c r a c k s  in the uns t r e s sed  body a re  s t rongly exposed and, a c c o r d i n g  to (19), can become not s t rongly  
exposed by applying c o m p r e s s i v e  s t r e s s e s .  F o r  example ,  let the loading be uniaxial so that O-iknin k 
= ~cos  2 0, whe re  0 is the angle between the loading axis  and the no rma l  to the c rack .  Then Xik is found 
by means  of (6) arid (8), with f independent of the angles ,  where  the integrat ion is ove r  all  ~o and over  0 
in the in te rva l  0 r / 2 )  - r  < 6 < (7r/2) + r  where  s i r i  2 r  --  h 2, -~ [(X0/X 1) -fT0]~rE0/4(1 - v2)(r if  the initial  
c r a c k  exposure  is s t rong,  and with the in te rva l  (7r/2) - $ * *  < 0 < (7r/2) + $** d i scarded ,  where  sin 2 r 

h2 -~ [rio- (X~ 7rE0/4(1 - v~)(-~) if  it is not s trong.  Here  the s t r e s s  a is a s sumed  to be adequate so 
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that  h ,  < 1 (for a > 0) o r  h** < 1 (for ~ < 0); in the oppos i te  c a s e  i ts  inf luence is negl igible .  In t eg ra t ing  
and us ing  the nota t ion kit = ~22 = )kt, N33 = )tl (the m e d i u m  ef fec t ive ly  b e c o m e s  t r a n s v e r s a l l y  i so t rop ic ) ,  fo r  
the c a s e  of  the ini t ia l  c r a c k  e x p o s u r e  not s t r o n g  we find 

[ 8 ( 4 - - 3 h , - - h a , ) v  1 
X~ = 22 1 -+- -9- ' (20) 

[ l { [(~?/~'~)--1301 ~E~ } 1'-~ )~z =)~~ 1 -? 16  (2--3h,  ~- ha)v , h ,  ~ �9 , 
9 " * 4(1 --v~)~ 

and for the case of a strong initial exposure, 

)~ = ~o [ t - i -  

- 9 -  (3h** - -  ' ' - -  4 (1 - -  vo)(-- cO . 

(21) 

5. All the preceding formulas are valid even if a small concentration of inclusions is introduced into 
the medium containing inclusions of much smaller size. ReLative to the inserted large inclusions, such a 
medium can be considered homogeneous and possessing an effective conductivity. Let us assume that there 
is a broad size distribution of inclusions, and inclusions of similar size to which an infinitely small con- 
centration corresponds are distributed uniformly in the space between the large-size inclusions; the total 
inclusion concentration can hence be finite. Then the resultant effective conductivity can be found by a step- 
by-step application of the low-concentration approximation. Thus, in the case of spherical inclusions we 
must rep[ace~X by ~. + dh, ~0 by h, v by dv in (12) to determine the increment in the heat conductivity d?~ 
as a result of adding an infinitesimal fraction of inclusions whose size considerably exceeds the size of all 
those already introduced, and then integrating we find 

v = t in �9 (22) 
/ 

In the c a s e  of quite high (?d/~ ~ >> 1 o r  quite low (~d/X ~ << I conduc t iv i ty  of the inc lus ions ,  we find 

= ).o exp (• (23) 

w h e r e  • = 47r in the f o r m e r  c a s e  and ~o = - 2 ~ ,  in the la t ter .  We a l so  have the s a m e  fo rmu la  with ~ = (32/9)  
and ~ = - ( 8 / 9 )  in the  s a m e  c a s e s  fo r  c r a c k s  [see (11) and (12)]. 

The m e d i u m  wil l  be t r a n s v e r s a [ l y  i so t rop ic  in each  s tep f o r  a s y s t e m  of paraLleL c r a c k s ,  so that by 
appLying an ana logous  p r o c e d u r e  to (17), we find for  the c a s e  of high conduct iv i ty  

Xt ) 3 ( I  8 i-~ , : - -  v kz = ),o. (24) 
, 3 

The low-conduc t iv i ty  ca se  can  be examined  in the s a m e  way. In the c a s e  of c r a c k s  v = N a  3 = ENia( i  ) ,  3 in 
these  f o r m u l a s ,  w h e r e  Ni is the n u m b e r  of c r a c k s  of  r ad iu s  a (i) pe r  unit vo lume of  the m e d i u m ,  N = 2N i. 
F o r  s p h e r i c a l  (and g e n e r a l l y  volume)  inc lus ions ,  v is analogously- e x p r e s s e d ;  h o w e v e r ,  N i a r e  the n u m b e r s  
of  inc lus ions  p e r  unit vo lume of the m e d i u m  in the space  be tween  all  the inc lus ions  of  r ad ius  g r e a t e r  than 
a(i ), s ince  it is n e c e s s a r y  to take into a c c oun t  the in t r ins i c  volume of the inc lus ions .  In this l a t t e r  c a s e ,  
ev ident ly  Avi = Nia}i ) = ( 3 / 4 ~ r ) A w i / ( 1 - w i ) ,  w h e r e  w i and Awi a r e  the vo lume f r ac t i ons  of  inc lus ions  of 
rad i i  g r e a t e r  than a(i ) and of  r ad ius  a(i  ), r e s p e c t i v e l y .  Going o v e r  to the a sympto t i c  of the b road  s ize  
d i s t r ibu t ion  and h e r e  r ep lac ing  the i n c r e m e n t  by the d i f fe ren t ia l ,  a f t e r  in tegra t ion  we find 

3 v In (1 - -  w). (25) 
4n 

Cons ide r ing  the vo lume f r a c t i o n  of  inc lus ions  as  a r g u m e n t  f r o m  the v e r y  beginning,  B r u g g e m a n  [4] 
e s t ab l i shed  a p o w e r - l a w  dependence  obtained f r o m  (22), (25) by e l imina t ing  v, wi thout  indicat ing,  how-  
e v e r ,  that  a b road  s ize  d i s t r ibu t ion  is r equ i red  f o r  i ts  val idi ty .  The value of  this r e q u i r e m e n t  f o r  the 
va l id i ty  of  the B r u g g e m a n  r e su l t s  (and the fac t  that  it is not  val id f o r  inc lus ions  of  mutua l ly  s i m i l a r  s ize)  
was  a p p a r e n t l y  f i r s t  conce ived  in [5]. In connec t ion  with the p r o b l e m  of the e f fec t ive  e las t ic  c h a r a c t e r i s t i c s  
of  bodies  with a l a rge  n u m b e r  of  c r a c k s ,  the a s y m p t o t i c  of a b road  s i ze  d i s t r ibu t ion  was  c o n s i d e r e d  in [6]. 
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The value of the r e s u l t s  obtained by using the d i f ferent ia l  p rocedure  mentioned e m e r g e s  beyond the 
f r a m e w o r k  of the approx imat ion  of a broad s ize  dis t r ibut ion,  however .  F o r  inclusions whose p rope r t i e s  
d i f fe r  s t rongly  f rom the p r o p e r t i e s  of the sur rounding  m a t e r i a l ,  including c r a c k s ,  these r e su l t s  a r e  d i rec t ly  
appl icable  independently of the s ize  dis t r ibut ion,  including the case  of comple te ly  ident ical  s i zes ,  in a wide 
range  of va r ia t ion  of the concent ra t ion  under  the condition that the inclusions r e m a i n  isola ted,  i .e . ,  the 
fo rma t ion  of pa i r s ,  t r ip l e t s ,  e tc . ,  can be neglected (in the opposite case  they should be taken into account  
as  new objects) ,  and that a spa t ia l  a r r a n g e m e n t  of inclusions compat ib le  with this r equ i r emen t  and the con-  
s e rva t i on  of this effect ive  s y m m e t r y  of the med ium be sufficiently random. However ,  it should be e m p h a -  
s ized  that  such a un iversa l i ty  of the r e su l t  holds for  volume inclusions only when v is taken as the a r g u -  
ment .  The dependence on the s ize  dis t r ibut ion is man i fe s t  in the exp re s s ion  of the r e su l t  in t e r m s  of the 
volume f rac t ion  of inclusions.  Thus,  we have the dependence (25) in the case  of a very  broad dis t r ibut ion 
and v = ( 3 / 4 r ) w ,  in the ca se  of ident ical  d imensions .  The a rgumen t  is only v for  c r a c k s  and s i m i l a r  q u e s -  
t ions do not a r i s e .  

The poss ib i l i ty  of the cons idered  broadening  of the range of appl icabi l i ty  of the resu l t s  obtained on 
the bas i s  of the ment ioned d i f fe ren t ia l  p rocedure  is shown and conf i rmed  exper imenta l ly  for  kindred p r o b -  
l ems  about the effect ive  e las t ic  c h a r a c t e r i s t i c s  in our  joint r e s e a r c h  with A. S. Vavakin. 

~s 

a i  
a 

c 

hi�9 
r 0 
Y 
fOr) 
N 
h3 
w 

= c / a ;  

= a~/ao; 
7" = xl/ ; 

Eo, Vo 
a ik  
U 

N O T A T I O N  

is the hea t  conductivi ty t en s o r  (s = 0, rqater ia l ;  s = 1, inclusions or c racks ;  no supe r sc r ip t ,  
effect ive) ;  
is the i so t rop ic  heat  conductivity;  
a r e  the hea t  conductivi ty in the ca se  of t r a n s v e r s a l  i so t ropy in the i so t ropy  plane and in the 
pe rpend icu l a r  d i rec t ion,  r e spec t ive ly ;  
is  the ha l f - length  of the axes  of an e l l ipsoidal  inclusion; 
is the rad ius  of a sphero ida l  inclusion a t  the equator  (par t icular ly  of a crack) ;  
is the ha l f - l eng th  of i ts  po la r  axis ;  
is the unit v e c t o r  of this axis ;  
a r e  the longitude and lati tude defining its direct ion;  
is the se t  of or ienta t ion and s ize  p a r a m e t e r s  of an e l l ipsoidal  inclusion; 

�9 is  the d is t r ibut ion  function of such inclusions;  
is the num ber  of all  c r a c k s  or  inclusions p e r  unit volume v = N~3; 
is  the mean  cubic rad ius  of a c r a c k  or  an inclusion equator;  
is the volume f rac t ion  of sphe r i ca l  inclusions;  

is the value of fi in an uns t r e s sed  body; 

a r e  the Young 's  modulus  and P o i s s o n ' s  ra t io  of the m a t e r i a l ;  
is the mechan ica l  s t r e s s  tensor ;  
is the uniaxial  s t r e s s ,  tensi le  (or > 0) o r  c o m p r e s s i v e  (~ < 0). 
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